Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures.
نویسندگان
چکیده
Optical nanostructures have enabled the creation of subdiffraction detection volumes for single-molecule fluorescence microscopy. Their applicability is extended by the ability to place molecules in the confined observation volume without interfering with their biological function. Here, we demonstrate that processive DNA synthesis thousands of bases in length was carried out by individual DNA polymerase molecules immobilized in the observation volumes of zero-mode waveguides (ZMWs) in high-density arrays. Selective immobilization of polymerase to the fused silica floor of the ZMW was achieved by passivation of the metal cladding surface using polyphosphonate chemistry, producing enzyme density contrasts of glass over aluminum in excess of 400:1. Yields of single-molecule occupancies of approximately 30% were obtained for a range of ZMW diameters (70-100 nm). Results presented here support the application of immobilized single DNA polymerases in ZMW arrays for long-read-length DNA sequencing.
منابع مشابه
High performance liquid chromatographic analysis of reduction products of a thiolated DNA for immobilization on gold nanoparticles
DNA-based nano-biosensors are emerging scope in the field of biosensors. Many synthetic single stranded functional DNAs have been applied for development of such sensors, recently. Immobilization of DNA oligonucleotides on the surface of gold nanoparticles is a key step in the development of most colorimetric nano-biosensors. The bound DNA is usually thiolated and forms Au-S covalent bond to th...
متن کاملDirect DNA Immobilization onto a Carbon Nanotube Modified Electrode: Study on the Influence of pH and Ionic Strength
Over the past years, DNA biosensors have been developed to analyze DNA interaction and damage that have important applications in biotechnological researches. The immobilization of DNA onto a substrate is one key step for construction of DNA electrochemical biosensors. In this report, a direct approach has been described for immobilization of single strand DNA onto carboxylic acid-functionalize...
متن کاملLive-cell imaging of single receptor composition using zero-mode waveguide nanostructures.
We exploit the optical and spatial features of subwavelength nanostructures to examine individual receptors on the plasma membrane of living cells. Receptors were sequestered in portions of the membrane projected into zero-mode waveguides. Using single-step photobleaching of green fluorescent protein incorporated into individual subunits, the resulting spatial isolation was used to measure subu...
متن کاملSingle-molecule detection and radiation control in solutions at high concentrations via a heterogeneous optical slot antenna.
We designed a heterogeneous optical slot antenna (OSA) that is capable of detecting single molecules in solutions at high concentrations, where most biological processes occur. A heterogeneous OSA consists of a rectangular nanoslot fabricated on heterogeneous metallic films formed by sequential deposition of gold and aluminum on a glass substrate. The rectangular nanoslot gives rise to large fi...
متن کاملReversible Positioning of Single Molecules inside Zero-Mode Waveguides
We have developed a hybrid nanopore/zero-mode waveguide device for single-molecule fluorescence and DNA sequencing applications. The device is a freestanding solid-state membrane with sub-5 nm nanopores that reversibly delivers individual biomolecules to the base of 70 nm diameter waveguides for interrogation. Rapid and reversible molecular loading is achieved by controlling the voltage across ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 4 شماره
صفحات -
تاریخ انتشار 2008